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ABSTRACT

In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the
EEG/MEG. This formulation offers a comparison framework for the wide range of
inverse methods available and allows us to address the problem of model uncertainty that
arises when dealing with different solutions for a single data. In this case, each model is
defined by the set of assumptions of the inverse method used, as well as by the functional
dependence between the data and the Primary Current Density (PCD) inside the brain.
The key point is that Bayesian Theory not only provides for posterior estimates of the
parameters of interest (the PCD) for a given model, but it also gives the possibility of
finding posterior expected utilities unconditional on the models assumed. In the present
work, this is achieved by considering a third level of inference that has been
systematically omitted by previous Bayesian formulations of the IP. This level is known
as Bayesian Model Averaging (BMA). The new approach is illustrated in the case of
considering different anatomical constraints for solving the IP of the EEG/MEG in the
frequency domain. This methodology allows us to address two of the main problems that
affect linear inverse solutions: a) the existence of ghost sources and b) the tendency to
underestimate deep activity. Both simulated and real experimental data are used to
demonstrate the capabilities of the BMA approach, and some of the results are compared
with the solutions obtained using the popular LOw Resolution Electromagnetic

TomogrAphy (LORETA), and it’s anatomically constraint version (cCLORETA).



1. INTRODUCTION

Our interest lies in the identification of the Electro/MagnetoEncephaloGram (EEG/MEG)
generators, that is, the distribution of current sources inside the brain that generate the
voltage/magnetic field measured over array of sensors distributed on the scalp surface.
This is known as the Inverse Problem of the EEG/MEG.

Much literature has been devoted to the solution of this problem. The main difficulty
stems from its ill-posed character due to the non-uniqueness of the solution, which is
caused by the existence of silent sources that cannot be measured over the scalp surface.
Additional complications that arise when dealing with actual data are related to the
limited number of sensors available, making the problem highly underdetermined; as well
as to the numerical instability of the solution, given by its high sensitivity to
measurement noise.

The usual way to deal with these difficulties has been to include additional information or
constraints about the physical and mathematical properties of the current sources inside
the head, which limits the space of possible solutions. This has resulted in the emergence
of a great variety of methods, each depending on the kind of information that has been
introduced and resulting consequently in many different unique solutions.

Some methods handle the many-to-one nature of the problem by characterizing the
sources in terms of a limited number of current dipoles that are fitted to the data through
the minimization of some measure of the reconstruction error (Nunez, 1981; Scherg et
al., 1986; de Munck 1989; Scholz and Schwierz, 1994). These dipolar solutions has been

widely used in the analysis of specific sensory and motor cortex data, where the



EEG/MEG is originated by the activation of small masses of neurons (Picton et al.,
1999), but have often failed in describing the spatial extension of more widespread
activity, as is the case of cognitive processes and certain pathologies.

Recently, the growing experimental evidence about the existence of more diffuse brain
networks, has led to the emergence of the so called Distributed Inverse Solutions (DIS).
The modeling in this sense has dramatically evolved from simple 2D approaches
(Hamalainen and Ilmoniemi, 1984; Gorodnitzky et al., 1992), to more sophisticated 3D
implementations (Hamalainen and Ilmoniemi, 1994; loannides et al., 1989; Wang et al.,
1992; Dale and Sereno, 1993; Pascual-Marqui et al., 1994; Fuchs et al., 1995;
Gorodnitsky et al., 1995; Srebro, 1996; Valdes-Sosa et al., 2000). These kinds of
methods are designed to cope with the non-uniqueness and the numerical instability of
the problem by constraining the source space to those brain regions capable of generating
voltage/magnetic fields over the scalp surface (anatomic constraints) and by
regularization, using different regularization operators or stabilizers (Tikhonov and
Arsenin, 1977). Most of these approaches lead to linear estimation procedures, which
although giving quite good results when dealing with widespread activities, they fail to
recover spatially concentrated sources, due to their tendency to smooth out activations.
Advances in this respect have been obtained with the development of some nonlinear
approaches in the last few years (Matsuura and Okada, 1997; Fuchs et al., 1999).

Given the wide range of methods available, it seems that again we have to face a problem
of non-uniqueness related to the selection of the most appropriate methods to be used for
a given data, among the host of inverse solutions at hand. In other words, we have to take

into account the uncertainty about selecting a single method for modeling our data. The



seminal paper by Schmidt e al. (1999) raises the first alarm in this direction by pointing
out the need to consider not a single “best” solution to the electromagnetic inverse
problem but a whole distribution of solutions. All the subsequent inference can be carried
out upon this distribution. A more detailed discussion of Schmidt’s work and its
differences with respect to the present approach are commented in the last section of this
paper.

This model uncertainty problem has been widely treated in the Bayesian literature in the
last decade and several solutions have been proposed and applied in many other fields of
scientific research (Raftery et al., 1993; Geweke, 1994; Green, 1995; Vidakovic, 1998).
In the case of neuroimaging the Bayesian formalism has been used in the formulation of
some special models, not only for EEG/MEG (Clarke, 1991 and 1994; Baillet and
Garnero, 1997; Bosch-Bayard et al., 2001), but also for other types of neuroimaging data,
like fMRI (Everitt and Bullmore, 1999; Friston, 2002; Friston et al., 2002a; Friston et al.,
2002b) and even for conjoint recordings of EEG/MEG and fMRI (Trujillo-Barreto et al.,
2001). Unfortunately, all these approaches limit the use of the Bayesian formalism to just
infer the value of the parameters and hyperparameters involved in the model, and
consequently they do not fully exploit its power to cope with hypothesis testing and
model selection. This last level of inference, which is usually omitted, is precisely what
gives the answer to the problem of taking into account the model uncertainty.

In the present paper the Bayesian framework is used to formulate the inverse problem of
the EEG/MEG in a way that accounts for model uncertainty. In order to do this, the main
aspects of the traditional Inverse Problem theory are reviewed and a Bayesian

formulation of the EEG Inverse Problem for the case of Minimum Norm type methods is



presented. In section 3 we apply this formulation to the problem of finding posterior
estimates of the current density inside the brain when different anatomical constraints are
assumed to describe a given data. In section 4 both simulated and real physiological data
are used to demonstrate the strength of the Bayesian paradigm when compared to
previous approaches. Finally, a discussion of the results and of several issues that still

remain open is carried out in the last section of this paper.

2. THEORY

2.1 Forward Problem

Without loss of generality we will consider only the case of just EEG recordings.
Modeling MEG or joint EEG/MEG recordings is completely analogous. The Forward
Problem in this case, i.e. the relation of the voltage measured over the scalp surface to a

given current density distribution inside the head is defined as
V()= K (5.7) F(F0)dT, (1)
where v(ﬁ,t) is the voltage measured over the scalp surface; the kernel K (fs,fg) is the

electric lead field, which summarizes the geometric and electric properties of the

conducting media (brain, skull and scalp) and establishes the link between the source and

sensor spaces; and j(fg,t) represents the Primary Current Density (PCD). The indices s

and g run respectively over the sensors and generators spaces and ¢ denotes time. In this
equation the lead field is known and easily calculated using the Reciprocity Theorem
(Plonsey, 1972; Rush and Driscoll, 1969), or simply by solving the forward problem

successively with dipole sources at various locations and orientations.



A common paradigm is to analyze spontaneous EEG or data coming from evoked steady-
state responses where, instead of the time evolution of the signal, we will be more
interested in its spectral content. Moreover, interest is usually on the current sources that
generate the activity at a given frequency. A common type of analysis in this case, is to
transform the whole problem to the frequency domain using the Fourier transform. Under
the assumption that all the EEG time series are observations from stationary stochastic
processes, this transformation is equivalent to a Principal Component Analysis (PCA),
giving a description where the complex exponentials at each frequency are the principal
components and are asymptotically independent by definition (Brillinger, 1975). In this

case, the problem takes the form
V(@)= [K (7.7, )-J (7.@)d, @
Here the symbol @ denotes frequency, and will be omitted from now on, since the

analysis can be carried out independently for each frequency due to the aforementioned

independence. Note that the voltage and the PCD in this equation are complex numbers.

2.2 EEG/MEG Inverse Problem: Regularization approach

The problem of solving (1) or (2) with respect to the PCD for a given voltage corresponds
to the solution of a Fredholm integral equation of the first kind, and it is known as the
Inverse Problem of the EEG. The main difficulty when dealing with this kind of
problems is its ill-posed character due to the non-uniqueness of the solution. In other
words, there are an infinite number of PCD configurations that give the same voltage

over the scalp surface.



In the ideal case we would like to find solutions in the continuum by making minimum
assumptions about the physical nature of the PCD. However, equation (2) has analytical
solution in very few special cases, where the assumed head geometry is sufficiently
simple, as in the three concentric spheres head model (Riera et al., 1997a; Riera et al.,
1997b). In more general cases, the source space is digitalized, going from the continuum
to a discrete 3D-grid of points constructed inside the head. This simplification reduces the
inverse problem to the solution of a system of linear equations,

Vs = Kioane “Jang T8 3)

where N, and N, are the total number of sensors and grid points respectively. It should

be noted that the 3N, rows of the column vector j correspond to the three components

of the PCD vector field for each point in the grid. In this equation we have included the
term g, , which represents the additive instrumental noise that affect the signal recorded
in the sensors.

As N, <<N,, the solution of (3) is a highly underdetermined problem with an ill-

conditioned system matrix K (discrete version of the electric lead field). This kind of
problems is commonly solved by Tikhonov regularization (Tikhonov and Arsenin, 1977).

That is, for a known regularization parameter A, the solution of (3) is given by

j(2)=argmin{|v-Kj| + 2* [0 j} @)
J

where ||x||2 is the square of the Frobenius’ norm given by ||X||2 =Trace (XiT), with X

denoting complex conjugate of the vector x. The parameter A is commonly calculated

by cross validation or by the L-curve method (Hansen, 1992), and represents the relative



. .. o2 .
weight between the data fitting error term ||V—K . J” and some assumptions about the

solution, given by the choice of H in the semi norm ||H j||2 (some examples of H are
reviewed in Pascual-Marqui (1999)). The family of solutions defined by these choices is
known as Minimum Norm methods (MN).

The explicit expression for j(/%) in this case, can be written in the form
i(A)=(K'K+ HH) K'v=T(1) v 5)
or equivalently
j(1)=H"K’ (K (H'H) K’ +2°1,, )l v=T(1) v ©6)
where I N, is the identity matrix of size N_ (Tarantola, 1987; Dale et al., 2000). Note that

in both equations, the solution relates linearly to the data (linear inverse solutions (LIS)),

which reduces the problem to finding the generalized inverse T(A) that transforms the

data into the estimated PCD.

Alternative approaches using norms other than Frobenius’ in equation (4) have been
described, leading to nonlinear estimations of the PCD (nonlinear inverse solutions
(NIS)) (Matsuura and Okabe 1995, 1996). These kinds of solutions, although giving less
blurred activations, show localization error values similar (in some cases even greater,
see for example Fuchs ef al. 1999) to LIS, and its implementation are more complex and
computationally time consuming. The present work focuses on linear solutions due to its
convenient [tomographic quality] to [computational cost] ratio, but we want to remark
that the Bayesian formulation described here, can also be applied to nonlinear approaches

as well.



2.2.1 Mathematical and anatomical constraints

As said before, different choices for the matrix H correspond to different assumptions
about the properties of the solution obtained. There are two kinds of assumptions
commonly used:

Mathematical constraints: Assumes that the solution of the problem belongs to a
particular functional space.

Anatomical constraints: Assumes that some parts of the brain are more probable of
generating a measurable voltage over the scalp surface than the others.

A popular method known as LOw Resolution Electromagnetic TomogrAphy (LORETA
(Pascual-Marqui et al., 1994)) for example, chooses H equal to the Laplacian operator
L, leading to solutions that are smooth in the sense of the second order derivative. In this
case, it is a common approach to introduce the anatomical constraints by solving the
inverse problem restricted to those points that belong to the gray matter. In order to
distinguish this second approach from the original unconstrained LORETA solution, it
will be designated as "constrained LORETA" (cLORETA).

At this stage we have a wide range of methods at hand, each leading to a different
solution of the EEG inverse problem. Thus we need to take into account the uncertainty
introduced when selecting a single model to find an optimal solution for a given data. In
the next section a Bayesian formulation of the inverse problem of the EEG that provides

an answer to this question, is presented.

2.3 EEG/MEG Inverse Problem: Bayesian approach
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As stated by MacKay (1992), “...in science, a central task is to develop and compare
models to account for the data that are gathered...” In the case of EEG imaging, for a
given data matrix v we typically consider several models M, (k=1,...,K), each of
which is assumed to depend on the vector of parameters j of interest. A Bayesian model

is then defined by the functional dependence of v on j (see expression (3)), and by two

probability distributions: a prior distribution p ( ilg.M k) that gives information about the

allowable values that j might take for a given model M,; and the likelihood

p(v Jo.M, ), which states the predictions that the model M, makes about the data v,

when the parameter vector has a particular value j. Here o and S are called
hyperparameters and express the degree of uncertainty about the prior assumptions and
the predictions, respectively.

To deal with the task stated by MacKay, the Bayesian framework involves three different
levels of inference:

Level 1: Infer the parameters j for a given model M, and given values of o and f by

maximizing the posterior density p ( jlv.o,.B.M, )

Level 2: Infer values for 0 and S that maximize the posterior density p(O', Blv.M k)

for a given model M, .
Level 3: Bayesian Model Averaging which address the problem of model selection by

using the posterior densities p (M . |V) of the models in order to make inference about the

parameters j without conditioning on any particular model.

11



There is no much difference in the outcomes of the first two levels of inference when
comparing Bayesian theory with more orthodox statistics. Is in the third level where
Bayesian formalism is in a class of its own, since there is no general orthodox method for
solving the problem of model selection. In the following sections, these three levels of

inference are discussed in detail for the case of EEG/MEG imaging.

2.3.1 Estimation of the PCD for a given model

At this level, a given model M, is considered to be true, and then j is estimated by

maximizing the posterior distribution p(j v,0,B8,M k) for known values of the

hyperparameters ¢ and S (MAP estimator), with the additional constraint that equation

(3) holds. The Bayes rule gives an expression for this posterior distribution:

p(vli.o.m,)p(j|B.M,)

P(V G’IB’Mk)

V,G,,B,Mk)Z

p(i )

The normalizing constant p(v|0', B.M k) is called the evidence for o and f, and is

commonly ignored, since it is irrelevant at this level of inference.

The likelihood p (v

jo.M k) is defined by making assumptions about the statistical

properties of the experimental noise € in equation (3). A reasonable assumption is that

the noise in the sensors obeys a complex multinormal density with zero mean and

. . 1 I . - .
covariance matrix X =—I where —= is the standard deviation. Under this

o Ns 2 \/E

assumption, the likelihood can be written as

p(vlio.M,)=N; (K-j.E,) (8)

12



with N denoting the complex multinormal distribution (see notation in Appendix A.1).

On the other hand, defining the prior probability p(j B.M k) entails assuming some

distribution over the parameters of interest, which summarizes the prior knowledge we

have about them. In this case, a complex multinormal density with zero mean and

. . 1 -l .
covariance matrix X, :E(Hsz) is assumed, where H, denotes the choice of the

mathematical and anatomical constraints for each model. That is,
p(ilB.M, )= N3, (0.%;) )

Note that all the prior information is included through the specification of the covariance

structure for PCD. Substituting equations (8) and (9) in (7), the posterior density takes the

form
p(ilv.0.8.M,)< N, (E[j|v.0.8.M |.Var[jlv.0,8.M,]) (10)
with posterior mean
E(j|v.0,8.M,)=cA"K'V =], (11)
and covariance
Var[j|v.o.B.M, ]=A" (12)

where A=0K'K+ S H;H, (see Appendix A.1). As we see, the expected value defined

in (11) is equivalent to the expression (5) for the PCD computed by regularization if we

define A° =£.
o

2.3.2 Inference of the hyperparameters ¢ and [
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Thus far, we have assumed that ¢ and £ are known. In order to assign values to these

hyperparameters, the posterior density p (0', Blv.M k) is maximized. Again from Bayes’

rule we have

(v

O-’ﬂ’Mk)p(G’ﬁ|Mk)
p(V|Mk)

p(O',ﬁ V,Mk): b

(13)

where p(V|M k) is called the evidence for the model M, , and will be omitted in this

inference level since it is not a function of o and . The data dependent term

p(v o,B.M k) has already appeared as the normalizing constant in equation (7), and
consequently it is calculated by integrating the numerator of that equation over j yielding

1o+ A
e

Al (14)

p(v G,ﬁ,Mk):[%] x B

(see Appendix A.l), where |X| denotes the determinant of matrix X. It should be noted

that in our case, this integral can be calculated analytically since both the likelihood and
the prior probabilities are Gaussian densities, giving a posterior distribution that is also
Gaussian. For more complicated probability distributions, this integral is not so easy to
compute and the methodology is more difficult to apply. Fortunately, quite often the
posterior probability can be locally approximated as a Gaussian around the most probable

value of the parameters, and the theory presented here still holds.

A more difficult task is to define the prior p(O', B |M k) due to the lack of knowledge

about the allowable values of the hyperparameters. This missing information can be

expressed by assuming a flat prior over logo and log 8, since both are scale parameters.

14



With this choice of the prior, the estimation of the hyperparameters reduces to maximize
the evidence for o and f in equation (14), yielding the following conditions:

2

pla

=Y

2

(15)
O'HV—K-jk

s

where y=3N, — B Trace (A*1 Hsz) and measures the effective number of parameters

that are well determined by the data. Note that this way of calculating the
hyperparameters differs from other approaches, based for example on misfit criteria, the
use of test data, and cross-validation. Gull (1989) has demonstrated why the popular use
of misfit criteria is incorrect, and the use of test data may be an unreliable technique
unless large quantities of data are available. In the case of cross-validation, it chooses
hyperparameters by comparing the prediction error on a test set that was not used to
estimate the values of the parameters. In this sense, the test error is a measure of
performance only of the single most probable parameter vector. The evidence however, is
a measure of plausibility of the entire posterior ensemble around the best fit estimator. A
more detailed discussion about the differences between the Bayesian framework and
other popular criteria for choosing hyperparameters, is carried out in the paper by
MacKay (1992).

The system of equations (11) and (15) defines then an iterative algorithm in which, given
initial values of jk, o and B, optimal estimators for those quantities conditional on

model M, , are obtained.

2.3.3 Bayesian Model Averaging
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As we have seen, the first two levels of inference do not differ much from the traditional
view of the inverse problem. In both cases, a single model is considered to be truth and
the PCD inside the brain is estimated under that assumption. Nevertheless, very often we
have several models at hand and we might want to infer which of those models are more
plausible given the data (model selection problem).

Much of the literature on statistical analysis in this situation has focused on choosing the

model M, that maximizes the posterior probability distribution

P(Mk|v)°‘p(V|Mk)P(Mk) (16)
(Smith, 1991). This procedure may be reasonable in some specific situations but, in the
general case, it is not valid because it doesn’t take into account the uncertainty associated
with selecting a single model to describe the data, leading to over-confident inferences
and very risky decisions.
On the other hand, Bayesian Model Averaging (BMA) offers an alternative way that has
been the center of attention of part of the Bayesian community during the last few years
(a good tutorial can be seen in Hoeting et al., 1999), since it provides a coherent
mechanism for accounting for model uncertainty. In the present work we will adopt the
point of view proposed by Kass ef al. (1994), who made use of the so called Bayes’
factors to compute posterior expected utilities in a way that accounts for model
uncertainty.

For two given models M, and M, the Bayes’ factor is defined as

(17)

16



(see Appendix A.2). Note that both the numerator and denominator are nothing but the

evidences for models M, and M, respectively. Based on this definition, Bayes’ factors

can be interpreted as a summary of evidence provided by the data in favor of a scientific
theory as opposed to another. Actually some authors use the evidence itself as a criterion
for model selection, which is motivated by the fact that it can be represented as a product
of two competing factors: the best-fit likelihood and an Occam’s factor. In this view the
evidence reflects a trade off between the simplicity of the model and its capability for
data fitting. A more detailed discussion about the interpretation of the evidence is
reviewed in MacKay (1992).

Thus, to completely specify the Bayes’ factor, we need to compute the evidences for the

models under consideration. Using the normalization condition for the posterior

probability p (G, B

v,M k) in equation (13), the evidence for any model M, can be

calculated by

p(viM,)=[p(v|o.8.M,)p(0.B|M,)dodp (18)

The integration in this equation is commonly a difficult task due to the complicated form
j,G,Mk) and —logp(j

of the integrand. Nevertheless, when —logp(v B.M k) are

quadratic forms (which is our case), the density p(v o,B.M k) reaches a single

maximum at its mode &, ,3 (MacKay, 1992), and the integral can be well approximated
by

6,,3,Mk)p(6,B|Mk)ZﬂAlogO'Alog,B (19)

p(v|Mk):p(v

where

17



1
Alogo e
( )=

(Alog BY =

N

are Gaussian error bars for logo and log . For the prior p (6‘, ,3 |M k) we have already

assumed a flat density over logo and log S, which cancels out when we calculate the
Bayes’ factor for two given models.
When dealing with several models M, M,,...,M , , we proceed by computing the Bayes’

factor for each of the K +1 models with respect to M, yielding B,,..., By, . Then, the

posterior probability of M, is easily derived

k=0,....K (20)

where @, =p(M,)/p(M,) and B, =1. In particular we may choose the prior odds ¢,

equal to 1, expressing that we have no prior preference for any of the models. In general
other values of @, may be chosen in order to include prior information about the relative
plausibility of competing models.

As said before, the results of the previous two sections offer a way to obtain posterior

estimates of j conditionally on model M, . On the other hand, with equation (20) it is

possible to make inference about j without conditioning, by defining its posterior density
given the observed data as

K

p(ilv)=L r(i

k=

0

v.M,)p(M,|v) (1)

18



Thus, the model uncertainty is taken into account by averaging the posterior distributions
under each model considered, weighted by their posterior model probability. Note that
the BMA strategy defined by this equation presents several advantages over other
alternatives. In Raftery and Madigan (1997) for example, the authors show that averaging
over all the models in this way provides better average predictive ability, as measured by

a logarithmic scoring rule, than using any single model M, . Particularly it can be easily

seen that procedures based on selecting a single model to carry out inference upon it, can
be feasible only in cases where the posterior probability of one of the models is close to

1.

Using the results of Raftery (1993), the posterior probability p (j|v) in (21) can be used

to define the posterior mean and covariance of j as follows:

ELilv]=

E[j

0

v.M, |- p(M,]v) (22)

K
k=

v.u, T ) p(M,|v)-E[ilv] (23)

V.M, |+E|]

K
Var[j|v]=Z(Var[j
k=0
where the mean and covariance of j conditional on each model M, are given by

equations (11) and (12) respectively. Note that here we have omitted the dependence on
the hyperparameters, since they are fixed at the values of maximum probability. As we
see from these equations, the resultant Bayesian solution is an average of the solutions
estimated under each model, weighted by the posterior probability of the corresponding
model. This solution will favor then models that receive more support from the data and

penalize those with low posterior probability values.

19



2.3.4 Occam’s Window

There are several practical difficulties for using expressions (22) and (23) when the
number of models taken into account is too large, since it would entail the repeated
evaluation of expectations that are commonly difficult to compute. This is critical for
high dimensional problems, for which the number of variables involved in the
calculations is extremely large. In neuroimaging for example, we usually deal with a
number of parameters that typically exceeds the ten of thousands.

This issue has been widely treated in the literature (Draper, 1995), and the general
consensus has been to construct search strategies to find the set of models that are worth
taking into account in expression (21). One of these strategies consists on generating a
Markov chain to explore the model space and then approximate (21) by the sample
version of its expectation (Madigan and York, 1992). Nevertheless, these types of
methods, although showing the best predictive performance, are extremely time
consuming.

In the present paper we will use the much simpler and more economic Occam’s Window
procedure described in Madigan and Raftery (1994) instead. In this method the authors
claim that a model that is much less likely a posteriori than the most likely one, should no
longer be considered, i.e. models that do not belong to the set

. mlax{p (Ml |V)}

A=<M, :
‘ p(Mk|V)

<N¢, (24)

should be excluded from equation (21). The constant N in (24) is a number much greater

than 1 (N =20 is a common choice). Additionally, appealing to Occam’s razor, complex

20



models with posterior probabilities smaller than their simpler counterparts should also be

excluded. These models are defined by the set,

B=<M,:AM € AM,cM M>l (25)
= k- I VL k> .
p(Mk|V)

Taking this into account, equation (21) is then replaced by

Z p(i[v.m )p(v|M, )p(M,)

P(j|V): = Z P(V|Mk)P(Mk)

H,eC

(26)

where the set C is defined by C = A\ B and is called the “Occam’s Window™.
The strategy to identify the models in C then consists of two main principles. The first

principle (Occam’s Window) concerns the interpretation of the ratio of posterior
probabilities p(M . |V)/ p (M 0 |V) Here M is a model nested within M, . The essential
idea is shown in figure 1. If there is evidence for M, then M, is rejected, but to reject
M, strong evidence is required for the larger model, M, . If the evidence is inconclusive

(falling in Occam’s Window) neither model is rejected. The second principle is that if

M, is rejected then so are all of the models nested within it. The final solution obtained

in this way is independent of the initial set of models considered, because any initial

model that includes C gives a similar result.

Insert figure 1 around here

3. APPLICATION
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3.1 Motivation

There are two main problems that seriously affect linear inverse solutions and have
captured the interest of several authors in this field:

Ghost sources: In addition to the actual sources that generate the EEG there are
additional sources in the estimated solution that do not make much physiological sense
and obscure the interpretation of the results. (Pascual-Marqui, 1995; Liitkenhoner and
Grave De Peralta, 1997).

Increasing bias with depth: This problem is related to the underestimation of deep
sources in favor of more superficial ones, leading to solutions that tend to explain the data
with the generators located near the sensors.

The common feature in these two situations is the difficulty of the method to correctly
identify the regions of the brain that actually contribute to the generation of the EEG. In
the first case, there is an overestimation of the number of sources, while in the second
some of the deep generators are omitted and/or wrongly reconstructed. We would like
then to construct a methodology that allows us to measure the adequacy of a brain region
for explaining the data, and use that measure to obtain solutions that automatically
penalize ghost sources and favor those that really contribute to the generation of the EEG.
In this respect, the Bayesian formulation described in previous sections offers a natural

solution to this task.

3.2 Specification of the models

Let us assume that we have subdivided the gray matter into a finite number of

compartments, and let us consider all the possible combinations of these compartments as
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different anatomical constraints to solve the inverse problem of the EEG. We introduce

these constraints in our formalism by defining the covariance matrix in (9) using
H,=L- (P, ®L,)
where L is the discrete Laplacian operator, I, is the identity matrix of size 3, ®

denotes the Kronecker product and P, is the diagonal matrix

Ly 0
Py
0o L 0
P, = P,
L pNg -

Here p, (i=1,...,N,) are the probabilities of the grid points for belonging to the gray
matter, and were derived from the average Probabilistic MRI Atlas (PMA) produced by
the Montreal Neurological Institute (Evans et al., 1993; Evans et al., 1994; Collins et al.,
1994; Mazziotta et al., 1995). With this definition of P, a particular anatomical
constraint is chosen by dropping the probabilities of the points outside the region of
interest to a value < 1. We will call each set of ps taken in this way as probabilistic

mask. Note that this parameterization of the covariance matrix reduces to the traditional

cLORETA method if we take P, =1, (see section 2.2.1 and 2.3.1), which means that

the solution is calculated for all grid points within the gray matter. For the original
unconstrained case (LORETA) all grid points within the head, including those that fall in
the white matter, need to be taken into account. In this sense, LORETA and cLORETA

could be interpreted as two of the models that are considered within the BMA paradigm.
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Thus, choosing different probabilistic masks will define different prior distributions over
the current density given by (9), and consequently will represent different Bayesian
models to be considered. Applying then the BMA framework to this case allows us to
measure the “adequacy” of each model to a given data in terms of the posterior
probabilities defined in (20); and to use equation (22) to obtain posterior estimates of the
PCD inside the brain by penalizing models or regions that receive less support from the

data, and favoring those with higher posterior probabilities.

Insert figure 2 around here

In the present work we take 71 brain regions, obtained from a 3D segmentation of the
PMA, as the compartments used to define the probabilistic mask corresponding to each
model. Since several of these structures might be involved in a given brain process, more
complex models need to be considered, and were constructed by combination of the
simple 71 compartments. As shown in figure 2, the segmentation preserves the
hemispheric symmetry of the brain, and includes also deep areas like thalamus, basal

ganglia and brain stem.

4. RESULTS

4.1 Simulations
In this section both EEG and MEG simulated data are used to characterize the BMA

approach as a tomographic method and to demonstrate its strengths in the analysis of both
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types of measurements. The results are also compared to previous approaches, such as

traditional LORETA and cLORETA solutions.

4.1.1 Description of the simulated data

According to section 2.2, our source space consists of a 3D-grid of points that represent
the possible generators of the EEG/MEG inside the brain, while the measurement space is
defined by the array of sensors where the EEG/MEG is recorded. In the present work
41,850 grid points (4.25 mm grid spacing) and different arrays of electrodes/coils are
placed in registration with the PMA. The 3D-grid is further clipped by the gray matter,
which consist of all brain regions segmented and shown in figure 2 (18,905 points). In
this way, the Bayesian models (as defined in section 3.2) are completely specified.

The three arrays of sensors used in this study are depicted in figure 3. For EEG
simulations a first set of 19 electrodes (EEG-19) from the 10/20 system (FP1, FP2, F3,
F4, C3, C4, P3, P4, Ol, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz) is chosen. A second
configuration of 120 electrodes (EEG-120) is also used in order to investigate the
dependence of the results on the number of sensors. In this case, the electrodes’ positions
are determined by extending and refining the 10/20 system. For MEG simulations, a
dense array of 151 sensors with a spatial localization that corresponds to the
configuration of gradiometers in the helmet of the CTF System Inc, is used (MEG-151).
The physical models constructed in this way, allow us to easily compute the
electric/magnetic lead field matrices that relate the PCD inside the head, to the

voltage/magnetic field measured at sensors’ locations in each case.
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Insert figure 3 around here

In the present study 25 test dipoles along the vertical axis through the center of the head
are simulated. The origin of the coordinate system used here (“center of the head”) is the
meeting point between the axis through inion and nasion and the axis through the
preauricle points of the left and right ear. The z-axis is then pointing upward (to the
vertex of the head), while the x- and y-axis are in the horizontal plane pointing to the
front and left side of the head respectively. The z-coordinates of the test dipoles then vary
from -46.75 to 80.75 mm.

Regarding the temporal dynamics, all sources are simulated using a linear combination of
sine functions with frequency components evenly spaced in the alpha band (8-12Hz). The

amplitude of the oscillation as a function of frequencies is a narrow Gaussian peaked at
10Hz, with maximum of 1 mA/m? (1 nA/mm?). That is, for each dipole position, the time

course of the activity is given by

N . 2
j()=Y Asin(2xf t), where A =¢ """ 8Hz < f, <12H:

i=1
Here f, are the frequency components and ¢ denotes time. Radial (vertical) and
tangential (horizontal) dipoles are used to investigate orientation dependent effects, and
the noise in each sensor was generated from a Gaussian distribution with zero mean and
was added to the voltage/magnetic field calculated by solving the forward problem. To
simulate realistic conditions, the noise variance was chosen in order to obtain a signal-to-
noise ratio (SNR) of about 10 for the most superficial dipoles. Since the dipoles have the

same strength time course throughout all simulations, depth-dependent SNRs are
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obtained. Taking all this into account, for each test dipole, 30 artifact-free epochs
(segments) of EEG/MEG, each 2 seconds long with a sample period of 5Sms, were
simulated and transformed to the frequency domain by using the Fast Fourier Transform
(FFT). Finally, the BMA approach, LORETA and cLORETA are used to obtain the

reconstructed current densities in each series of experiments.

4.1.2 Localization error and spatial resolution

In order to evaluate the reconstructions results, the same measures evaluated by Fuchs et
al. (1999), are used. In that work, a similar simulation study was carried for comparison
and characterization of different linear and nonlinear Minimum Norm approaches, in
terms of its mislocalization and spatial resolution. The localization error is then defined
as the distance from the weighted centers of the clipped (by a 50% threshold) current

distributions, to the true position 7, of the simulated dipole, that is

,with j >05/

lorl=| L7 [ -

where 7. is the position of the i-th voxel with activity above the 50% of maximum

activation, and j; is the absolute value of the PCD at that voxel. The resolution of the

methods is determined by the FWHM (Full With at Half Maximum) volume, which as in
Fuchs’ paper, is calculated by counting all voxels with strength above 50% of the

maximum current and multiplying that number by the volume of the voxel
(4.25%4.25+%4.25 mm’ =18.06 mm’). The localization errors are further normalized to

the head radius measured vertically along the z-axis (85 mm), and the FWHM volumes
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are normalized to the volume of the sphere defined by that radius. The tw