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ABSTRACT 

 

In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the 

EEG/MEG. This formulation offers a comparison framework for the wide range of 

inverse methods available and allows us to address the problem of model uncertainty that 

arises when dealing with different solutions for a single data. In this case, each model is 

defined by the set of assumptions of the inverse method used, as well as by the functional 

dependence between the data and the Primary Current Density (PCD) inside the brain. 

The key point is that Bayesian Theory not only provides for posterior estimates of the 

parameters of interest (the PCD) for a given model, but it also gives the possibility of 

finding posterior expected utilities unconditional on the models assumed. In the present 

work, this is achieved by considering a third level of inference that has been 

systematically omitted by previous Bayesian formulations of the IP. This level is known 

as Bayesian Model Averaging (BMA). The new approach is illustrated in the case of 

considering different anatomical constraints for solving the IP of the EEG/MEG in the 

frequency domain. This methodology allows us to address two of the main problems that 

affect linear inverse solutions: a) the existence of ghost sources and b) the tendency to 

underestimate deep activity. Both simulated and real experimental data are used to 

demonstrate the capabilities of the BMA approach, and some of the results are compared 

with the solutions obtained using the popular LOw Resolution Electromagnetic 

TomogrAphy (LORETA), and it’s anatomically constraint version (cLORETA). 



 3 

1. INTRODUCTION 

 

Our interest lies in the identification of the Electro/MagnetoEncephaloGram (EEG/MEG) 

generators, that is, the distribution of current sources inside the brain that generate the 

voltage/magnetic field measured over array of sensors distributed on the scalp surface. 

This is known as the Inverse Problem of the EEG/MEG. 

Much literature has been devoted to the solution of this problem. The main difficulty 

stems from its ill-posed character due to the non-uniqueness of the solution, which is 

caused by the existence of silent sources that cannot be measured over the scalp surface. 

Additional complications that arise when dealing with actual data are related to the 

limited number of sensors available, making the problem highly underdetermined; as well 

as to the numerical instability of the solution, given by its high sensitivity to 

measurement noise. 

The usual way to deal with these difficulties has been to include additional information or 

constraints about the physical and mathematical properties of the current sources inside 

the head, which limits the space of possible solutions. This has resulted in the emergence 

of a great variety of methods, each depending on the kind of information that has been 

introduced and resulting consequently in many different unique solutions. 

Some methods handle the many-to-one nature of the problem by characterizing the 

sources in terms of a limited number of current dipoles that are fitted to the data through 

the minimization of some measure of the reconstruction error (Nunez, 1981; Scherg et 

al., 1986; de Munck 1989; Scholz and Schwierz, 1994). These dipolar solutions has been 

widely used in the analysis of specific sensory and motor cortex data, where the 
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EEG/MEG is originated by the activation of small masses of neurons (Picton et al., 

1999), but have often failed in describing the spatial extension of more widespread 

activity, as is the case of cognitive processes and certain pathologies. 

Recently, the growing experimental evidence about the existence of more diffuse brain 

networks, has led to the emergence of the so called Distributed Inverse Solutions (DIS). 

The modeling in this sense has dramatically evolved from simple 2D approaches 

(Hamalainen and Ilmoniemi, 1984; Gorodnitzky et al., 1992), to more sophisticated 3D 

implementations (Hamalainen and Ilmoniemi, 1994; Ioannides et al., 1989; Wang et al., 

1992; Dale and Sereno, 1993; Pascual-Marqui et al., 1994; Fuchs et al., 1995; 

Gorodnitsky et al., 1995; Srebro, 1996; Valdes-Sosa et al., 2000). These kinds of 

methods are designed to cope with the non-uniqueness and the numerical instability of 

the problem by constraining the source space to those brain regions capable of generating 

voltage/magnetic fields over the scalp surface (anatomic constraints) and by 

regularization, using different regularization operators or stabilizers (Tikhonov and 

Arsenin, 1977). Most of these approaches lead to linear estimation procedures, which 

although giving quite good results when dealing with widespread activities, they fail to 

recover spatially concentrated sources, due to their tendency to smooth out activations. 

Advances in this respect have been obtained with the development of some nonlinear 

approaches in the last few years (Matsuura and Okada, 1997; Fuchs et al., 1999). 

Given the wide range of methods available, it seems that again we have to face a problem 

of non-uniqueness related to the selection of the most appropriate methods to be used for 

a given data, among the host of inverse solutions at hand. In other words, we have to take 

into account the uncertainty about selecting a single method for modeling our data. The 
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seminal paper by Schmidt et al. (1999) raises the first alarm in this direction by pointing 

out the need to consider not a single “best” solution to the electromagnetic inverse 

problem but a whole distribution of solutions. All the subsequent inference can be carried 

out upon this distribution. A more detailed discussion of Schmidt’s work and its 

differences with respect to the present approach are commented in the last section of this 

paper. 

This model uncertainty problem has been widely treated in the Bayesian literature in the 

last decade and several solutions have been proposed and applied in many other fields of 

scientific research (Raftery et al., 1993; Geweke, 1994; Green, 1995; Vidakovic, 1998). 

In the case of neuroimaging the Bayesian formalism has been used in the formulation of 

some special models, not only for EEG/MEG (Clarke, 1991 and 1994; Baillet and 

Garnero, 1997; Bosch-Bayard et al., 2001), but also for other types of neuroimaging data, 

like fMRI (Everitt and Bullmore, 1999; Friston, 2002; Friston et al., 2002a; Friston et al., 

2002b) and even for conjoint recordings of EEG/MEG and fMRI (Trujillo-Barreto et al., 

2001). Unfortunately, all these approaches limit the use of the Bayesian formalism to just 

infer the value of the parameters and hyperparameters involved in the model, and 

consequently they do not fully exploit its power to cope with hypothesis testing and 

model selection. This last level of inference, which is usually omitted, is precisely what 

gives the answer to the problem of taking into account the model uncertainty. 

In the present paper the Bayesian framework is used to formulate the inverse problem of 

the EEG/MEG in a way that accounts for model uncertainty. In order to do this, the main 

aspects of the traditional Inverse Problem theory are reviewed and a Bayesian 

formulation of the EEG Inverse Problem for the case of Minimum Norm type methods is 
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presented. In section 3 we apply this formulation to the problem of finding posterior 

estimates of the current density inside the brain when different anatomical constraints are 

assumed to describe a given data. In section 4 both simulated and real physiological data 

are used to demonstrate the strength of the Bayesian paradigm when compared to 

previous approaches. Finally, a discussion of the results and of several issues that still 

remain open is carried out in the last section of this paper. 

 

2. THEORY 

 

2.1 Forward Problem 

Without loss of generality we will consider only the case of just EEG recordings. 

Modeling MEG or joint EEG/MEG recordings is completely analogous. The Forward 

Problem in this case, i.e. the relation of the voltage measured over the scalp surface to a 

given current density distribution inside the head is defined as 

 ( ) ( ) ( ) 3, , ,s s g g gv r t K r r j r t d r= ⋅∫
GG G G G G

 (1) 

where ( ),sv r t
G

 is the voltage measured over the scalp surface; the kernel ( ),s gK r r
G G

 is the 

electric lead field, which summarizes the geometric and electric properties of the 

conducting media (brain, skull and scalp) and establishes the link between the source and 

sensor spaces; and ( ),gj r t
G G

 represents the Primary Current Density (PCD). The indices s 

and g run respectively over the sensors and generators spaces and t  denotes time. In this 

equation the lead field is known and easily calculated using the Reciprocity Theorem 

(Plonsey, 1972; Rush and Driscoll, 1969), or simply by solving the forward problem 

successively with dipole sources at various locations and orientations. 
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A common paradigm is to analyze spontaneous EEG or data coming from evoked steady-

state responses where, instead of the time evolution of the signal, we will be more 

interested in its spectral content. Moreover, interest is usually on the current sources that 

generate the activity at a given frequency. A common type of analysis in this case, is to 

transform the whole problem to the frequency domain using the Fourier transform. Under 

the assumption that all the EEG time series are observations from stationary stochastic 

processes, this transformation is equivalent to a Principal Component Analysis (PCA), 

giving a description where the complex exponentials at each frequency are the principal 

components and are asymptotically independent by definition (Brillinger, 1975). In this 

case, the problem takes the form 

 ( ) ( ) ( ) 3, , ,s s g g gv r K r r j r d rϖ ϖ= ⋅∫
GG G G G G

 (2) 

Here the symbol ϖ  denotes frequency, and will be omitted from now on, since the 

analysis can be carried out independently for each frequency due to the aforementioned 

independence. Note that the voltage and the PCD in this equation are complex numbers. 

 

2.2 EEG/MEG Inverse Problem: Regularization approach 

The problem of solving (1) or (2) with respect to the PCD for a given voltage corresponds 

to the solution of a Fredholm integral equation of the first kind, and it is known as the 

Inverse Problem of the EEG. The main difficulty when dealing with this kind of 

problems is its ill-posed character due to the non-uniqueness of the solution. In other 

words, there are an infinite number of PCD configurations that give the same voltage 

over the scalp surface. 
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In the ideal case we would like to find solutions in the continuum by making minimum 

assumptions about the physical nature of the PCD. However, equation (2) has analytical 

solution in very few special cases, where the assumed head geometry is sufficiently 

simple, as in the three concentric spheres head model (Riera et al., 1997a; Riera et al., 

1997b). In more general cases, the source space is digitalized, going from the continuum 

to a discrete 3D-grid of points constructed inside the head. This simplification reduces the 

inverse problem to the solution of a system of linear equations, 

 3 3Ns Ns Ng Ng Ns×= ⋅ +v K j  (3) 

where sN  and gN  are the total number of sensors and grid points respectively. It should 

be noted that the 3 gN  rows of the column vector j  correspond to the three components 

of the PCD vector field for each point in the grid. In this equation we have included the 

term 
sN , which represents the additive instrumental noise that affect the signal recorded 

in the sensors.  

As s gN N<< , the solution of (3) is a highly underdetermined problem with an ill-

conditioned system matrix K  (discrete version of the electric lead field). This kind of 

problems is commonly solved by Tikhonov regularization (Tikhonov and Arsenin, 1977). 

That is, for a known regularization parameter λ , the solution of (3) is given by 

 ( ) { }2 22ˆ arg minλ λ= − ⋅ + ⋅
j

j v K j H j  (4) 

where 
2x  is the square of the Frobenius’ norm given by ( )2 TTrace=x x x , with x  

denoting complex conjugate of the vector x . The parameter λ  is commonly calculated 

by cross validation or by the L-curve method (Hansen, 1992), and represents the relative 
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weight between the data fitting error term 
2− ⋅v K j  and some assumptions about the 

solution, given by the choice of H  in the semi norm 
2⋅H j  (some examples of H  are 

reviewed in Pascual-Marqui (1999)). The family of solutions defined by these choices is 

known as Minimum Norm methods (MN). 

The explicit expression for ( )ˆ λj  in this case, can be written in the form  

 ( ) ( ) ( )12ˆ T T Tλ λ λ
−

= + = ⋅j K K H H K v T v  (5) 

or equivalently  

 ( ) ( )( ) ( )
111 2ˆ

s

T T T
Nλ λ λ

−−−= + = ⋅j H K K H H K I v T v  (6) 

where 
sNI  is the identity matrix of size sN  (Tarantola, 1987; Dale et al., 2000). Note that 

in both equations, the solution relates linearly to the data (linear inverse solutions (LIS)), 

which reduces the problem to finding the generalized inverse ( )λT  that transforms the 

data into the estimated PCD.  

Alternative approaches using norms other than Frobenius’ in equation (4) have been 

described, leading to nonlinear estimations of the PCD (nonlinear inverse solutions 

(NIS)) (Matsuura and Okabe 1995, 1996). These kinds of solutions, although giving less 

blurred activations, show localization error values similar (in some cases even greater, 

see for example Fuchs et al. 1999) to LIS, and its implementation are more complex and 

computationally time consuming. The present work focuses on linear solutions due to its 

convenient [tomographic quality] to [computational cost] ratio, but we want to remark 

that the Bayesian formulation described here, can also be applied to nonlinear approaches 

as well.  
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2.2.1 Mathematical and anatomical constraints 

As said before, different choices for the matrix H  correspond to different assumptions 

about the properties of the solution obtained. There are two kinds of assumptions 

commonly used: 

Mathematical constraints: Assumes that the solution of the problem belongs to a 

particular functional space. 

Anatomical constraints: Assumes that some parts of the brain are more probable of 

generating a measurable voltage over the scalp surface than the others. 

A popular method known as LOw Resolution Electromagnetic TomogrAphy (LORETA 

(Pascual-Marqui et al., 1994)) for example, chooses H  equal to the Laplacian operator 

L , leading to solutions that are smooth in the sense of the second order derivative. In this 

case, it is a common approach to introduce the anatomical constraints by solving the 

inverse problem restricted to those points that belong to the gray matter. In order to 

distinguish this second approach from the original unconstrained LORETA solution, it 

will be designated as "constrained LORETA" (cLORETA). 

At this stage we have a wide range of methods at hand, each leading to a different 

solution of the EEG inverse problem. Thus we need to take into account the uncertainty 

introduced when selecting a single model to find an optimal solution for a given data. In 

the next section a Bayesian formulation of the inverse problem of the EEG that provides 

an answer to this question, is presented. 

 

2.3 EEG/MEG Inverse Problem: Bayesian approach 
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As stated by MacKay (1992), “…in science, a central task is to develop and compare 

models to account for the data that are gathered…” In the case of EEG imaging, for a 

given data matrix v  we typically consider several models kM  ( 1, ,k K= ! ), each of 

which is assumed to depend on the vector of parameters j  of interest. A Bayesian model 

is then defined by the functional dependence of v  on j  (see expression (3)), and by two 

probability distributions: a prior distribution ( ), kp Mβj  that gives information about the 

allowable values that j  might take for a given model kM ; and the likelihood 

( ), , kp Mσv j , which states the predictions that the model kM  makes about the data v , 

when the parameter vector has a particular value j . Here σ  and β  are called 

hyperparameters and express the degree of uncertainty about the prior assumptions and 

the predictions, respectively. 

To deal with the task stated by MacKay, the Bayesian framework involves three different 

levels of inference: 

Level 1: Infer the parameters j  for a given model kM  and given values of σ  and β  by 

maximizing the posterior density ( ), , , kp Mσ βj v . 

Level 2: Infer values for σ  and β  that maximize the posterior density ( ), , kp Mσ β v  

for a given model kM . 

Level 3: Bayesian Model Averaging which address the problem of model selection by 

using the posterior densities ( )kp M v  of the models in order to make inference about the 

parameters j  without conditioning on any particular model. 



 12 

There is no much difference in the outcomes of the first two levels of inference when 

comparing Bayesian theory with more orthodox statistics. Is in the third level where 

Bayesian formalism is in a class of its own, since there is no general orthodox method for 

solving the problem of model selection. In the following sections, these three levels of 

inference are discussed in detail for the case of EEG/MEG imaging. 

 

2.3.1 Estimation of the PCD for a given model 

At this level, a given model kM  is considered to be true, and then j  is estimated by 

maximizing the posterior distribution ( ), , , kp Mσ βj v  for known values of the 

hyperparameters σ  and β  (MAP estimator), with the additional constraint that equation 

(3) holds. The Bayes rule gives an expression for this posterior distribution: 

 ( ) ( ) ( )
( )

, , ,
, , ,

, ,
k k

k
k

p M p M
p M

p M

σ β
σ β

σ β
=

v j j
j v

v
 (7) 

The normalizing constant ( ), , kp Mσ βv  is called the evidence for σ  and β , and is 

commonly ignored, since it is irrelevant at this level of inference. 

The likelihood ( ), , kp Mσv j  is defined by making assumptions about the statistical 

properties of the experimental noise  in equation (3). A reasonable assumption is that 

the noise in the sensors obeys a complex multinormal density with zero mean and 

covariance matrix 
1

Nsσ
=v , , where 

1
σ

 is the standard deviation. Under this 

assumption, the likelihood can be written as 

 ( ) ( ), , ,
s

c
k Np M Nσ = ⋅ vv j K j  (8) 
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with cN  denoting the complex multinormal distribution (see notation in Appendix A.1). 

On the other hand, defining the prior probability ( ), kp Mβj  entails assuming some 

distribution over the parameters of interest, which summarizes the prior knowledge we 

have about them. In this case, a complex multinormal density with zero mean and 

covariance matrix ( ) 11 T
k kβ

−
=j + +  is assumed, where kH  denotes the choice of the 

mathematical and anatomical constraints for each model. That is,  

 ( ) ( )3, ,
g

c
k Np M Nβ = jj 0  (9) 

Note that all the prior information is included through the specification of the covariance 

structure for PCD. Substituting equations (8) and (9) in (7), the posterior density takes the 

form 

 ( ) ( )3, , , , , , , , , ,
g

c
k N kp M N E M Var Mσ β σ β σ β   ∝    j v j v j v  (10) 

with posterior mean 

 ( ) 1 ˆ, , , T
k kE Mσ β σ −= =j v A K V j  (11) 

and covariance 

 1, , , kVar Mσ β −  = j v A  (12) 

where T T
k kσ β= +A K K H H  (see Appendix A.1). As we see, the expected value defined 

in (11) is equivalent to the expression (5) for the PCD computed by regularization if we 

define 2 βλ
σ

= . 

 

2.3.2 Inference of the hyperparameters σ  and β  
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Thus far, we have assumed that σ  and β  are known. In order to assign values to these 

hyperparameters, the posterior density ( ), , kp Mσ β v  is maximized. Again from Bayes’ 

rule we have 

 ( ) ( ) ( )
( )

, , ,
, , k k

k
k

p M p M
p M

p M

σ β σ β
σ β =

v
v

v
 (13) 

where ( )kp Mv  is called the evidence for the model kM , and will be omitted in this 

inference level since it is not a function of σ  and β . The data dependent term 

( ), , kp Mσ βv  has already appeared as the normalizing constant in equation (7), and 

consequently it is calculated by integrating the numerator of that equation over j  yielding 

 ( )
22 1 2ˆ13, ,

s
kg

N
N

kp M e
σσσ β β

π
− +− =   

v A jv A  (14) 

(see Appendix A.1), where X  denotes the determinant of matrix X . It should be noted 

that in our case, this integral can be calculated analytically since both the likelihood and 

the prior probabilities are Gaussian densities, giving a posterior distribution that is also 

Gaussian. For more complicated probability distributions, this integral is not so easy to 

compute and the methodology is more difficult to apply. Fortunately, quite often the 

posterior probability can be locally approximated as a Gaussian around the most probable 

value of the parameters, and the theory presented here still holds. 

A more difficult task is to define the prior ( ), kp Mσ β  due to the lack of knowledge 

about the allowable values of the hyperparameters. This missing information can be 

expressed by assuming a flat prior over logσ  and log β , since both are scale parameters. 
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With this choice of the prior, the estimation of the hyperparameters reduces to maximize 

the evidence for σ  and β  in equation (14), yielding the following conditions: 

 

2

2

ˆ

ˆ

k k

k sN

β γ

σ γ

⋅ =

− ⋅ = −

H j

v K j
 (15) 

where ( )13 T
g k kN Traceγ β −= − A H H  and measures the effective number of parameters 

that are well determined by the data. Note that this way of calculating the 

hyperparameters differs from other approaches, based for example on misfit criteria, the 

use of test data, and cross-validation. Gull (1989) has demonstrated why the popular use 

of misfit criteria is incorrect, and the use of test data may be an unreliable technique 

unless large quantities of data are available. In the case of cross-validation, it chooses 

hyperparameters by comparing the prediction error on a test set that was not used to 

estimate the values of the parameters. In this sense, the test error is a measure of 

performance only of the single most probable parameter vector. The evidence however, is 

a measure of plausibility of the entire posterior ensemble around the best fit estimator. A 

more detailed discussion about the differences between the Bayesian framework and 

other popular criteria for choosing hyperparameters, is carried out in the paper by 

MacKay (1992). 

The system of equations (11) and (15) defines then an iterative algorithm in which, given 

initial values of k̂j , σ  and β , optimal estimators for those quantities conditional on 

model kM , are obtained. 

 

2.3.3 Bayesian Model Averaging 
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As we have seen, the first two levels of inference do not differ much from the traditional 

view of the inverse problem. In both cases, a single model is considered to be truth and 

the PCD inside the brain is estimated under that assumption. Nevertheless, very often we 

have several models at hand and we might want to infer which of those models are more 

plausible given the data (model selection problem). 

Much of the literature on statistical analysis in this situation has focused on choosing the 

model kM  that maximizes the posterior probability distribution 

 ( ) ( ) ( )k k kp M p M p M∝v v  (16) 

(Smith, 1991). This procedure may be reasonable in some specific situations but, in the 

general case, it is not valid because it doesn’t take into account the uncertainty associated 

with selecting a single model to describe the data, leading to over-confident inferences 

and very risky decisions. 

On the other hand, Bayesian Model Averaging (BMA) offers an alternative way that has 

been the center of attention of part of the Bayesian community during the last few years 

(a good tutorial can be seen in Hoeting et al., 1999), since it provides a coherent 

mechanism for accounting for model uncertainty. In the present work we will adopt the 

point of view proposed by Kass et al. (1994), who made use of the so called Bayes’ 

factors to compute posterior expected utilities in a way that accounts for model 

uncertainty.  

For two given models 1M  and 0M , the Bayes’ factor is defined as 

 
( )
( )

1
10

0

p M
B

p M
=

v
v

 (17) 
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(see Appendix A.2). Note that both the numerator and denominator are nothing but the 

evidences for models 1M  and 0M , respectively. Based on this definition, Bayes’ factors 

can be interpreted as a summary of evidence provided by the data in favor of a scientific 

theory as opposed to another. Actually some authors use the evidence itself as a criterion 

for model selection, which is motivated by the fact that it can be represented as a product 

of two competing factors: the best-fit likelihood and an Occam’s factor. In this view the 

evidence reflects a trade off between the simplicity of the model and its capability for 

data fitting. A more detailed discussion about the interpretation of the evidence is 

reviewed in MacKay (1992). 

Thus, to completely specify the Bayes’ factor, we need to compute the evidences for the 

models under consideration. Using the normalization condition for the posterior 

probability ( ), , kp Mσ β v  in equation (13), the evidence for any model kM  can be 

calculated by 

 ( ) ( ) ( ), , ,k k kp M p M p M d dσ β σ β σ β= ∫v v  (18) 

The integration in this equation is commonly a difficult task due to the complicated form 

of the integrand. Nevertheless, when ( )log , , kp Mσ− v j  and ( )log , kp Mβ− j  are 

quadratic forms (which is our case), the density ( ), , kp Mσ βv  reaches a single 

maximum at its mode σ̂ , β̂  (MacKay, 1992), and the integral can be well approximated 

by 

 ( ) ( ) ( )ˆ ˆˆ ˆ, , , 2 log logk k kp M p M p Mσ β σ β π σ β∆ ∆v v�  (19) 

where 
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( )

( )

2

2

1
log

1
log

sN

σ
γ

β
γ

∆

∆
−

�

�

 

are Gaussian error bars for logσ  and log β . For the prior ( )ˆ,̂ kp Mσ β  we have already 

assumed a flat density over logσ  and log β , which cancels out when we calculate the 

Bayes’  factor for two given models. 

When dealing with several models 0 1, , , KM M M! , we proceed by computing the Bayes’  

factor for each of the 1K +  models with respect to 0M , yielding 10 0, , KB B! . Then, the 

posterior probability of kM  is easily derived 

 ( ) 0

0
0

0, ,k k
k K

r r
r

B
p M k K

B

α

α
=

= =
∑

v !  (20) 

where ( ) ( )0k kp M p Mα =  and 00 1B = . In particular we may choose the prior odds kα  

equal to 1, expressing that we have no prior preference for any of the models. In general 

other values of kα  may be chosen in order to include prior information about the relative 

plausibility of competing models. 

As said before, the results of the previous two sections offer a way to obtain posterior 

estimates of j  conditionally on model kM . On the other hand, with equation (20) it is 

possible to make inference about j  without conditioning, by defining its posterior density 

given the observed data as 

 ( ) ( ) ( )
0

,
K

k k
k

p p M p M
=

= ∑j v j v v  (21) 
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Thus, the model uncertainty is taken into account by averaging the posterior distributions 

under each model considered, weighted by their posterior model probability. Note that 

the BMA strategy defined by this equation presents several advantages over other 

alternatives. In Raftery and Madigan (1997) for example, the authors show that averaging 

over all the models in this way provides better average predictive ability, as measured by 

a logarithmic scoring rule, than using any single model kM . Particularly it can be easily 

seen that procedures based on selecting a single model to carry out inference upon it, can 

be feasible only in cases where the posterior probability of one of the models is close to 

1.  

Using the results of Raftery (1993), the posterior probability ( )p j v  in (21) can be used 

to define the posterior mean and covariance of j  as follows: 

 ( )
0

,
K

k k
k

E E M p M
=

   = ⋅   ∑j v j v v  (22) 

 ( ) ( )2 2

0

, ,
K

k k k
k

Var Var M E M p M E
=

       = + ⋅ −       ∑j v j v j v v j v  (23) 

where the mean and covariance of j  conditional on each model kM  are given by 

equations (11) and (12) respectively. Note that here we have omitted the dependence on 

the hyperparameters, since they are fixed at the values of maximum probability. As we 

see from these equations, the resultant Bayesian solution is an average of the solutions 

estimated under each model, weighted by the posterior probability of the corresponding 

model. This solution will favor then models that receive more support from the data and 

penalize those with low posterior probability values. 
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2.3.4 Occam’s Window 

There are several practical difficulties for using expressions (22) and (23) when the 

number of models taken into account is too large, since it would entail the repeated 

evaluation of expectations that are commonly difficult to compute. This is critical for 

high dimensional problems, for which the number of variables involved in the 

calculations is extremely large. In neuroimaging for example, we usually deal with a 

number of parameters that typically exceeds the ten of thousands. 

This issue has been widely treated in the literature (Draper, 1995), and the general 

consensus has been to construct search strategies to find the set of models that are worth 

taking into account in expression (21). One of these strategies consists on generating a 

Markov chain to explore the model space and then approximate (21) by the sample 

version of its expectation (Madigan and York, 1992). Nevertheless, these types of 

methods, although showing the best predictive performance, are extremely time 

consuming. 

In the present paper we will use the much simpler and more economic Occam’s Window 

procedure described in Madigan and Raftery (1994) instead. In this method the authors 

claim that a model that is much less likely a posteriori than the most likely one, should no 

longer be considered, i.e. models that do not belong to the set 
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should be excluded from equation (21). The constant N  in (24) is a number much greater 

than 1 ( 20N =  is a common choice). Additionally, appealing to Occam’ s razor, complex 
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models with posterior probabilities smaller than their simpler counterparts should also be 

excluded. These models are defined by the set, 
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Taking this into account, equation (21) is then replaced by 
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where the set C  is defined by \C A B=  and is called the “Occam’ s Window”. 

The strategy to identify the models in C  then consists of two main principles. The first 

principle (Occam’ s Window) concerns the interpretation of the ratio of posterior 

probabilities ( ) ( )1 0p M p Mv v . Here 0M  is a model nested within 1M . The essential 

idea is shown in figure 1. If there is evidence for 0M  then 1M  is rejected, but to reject 

0M  strong evidence is required for the larger model, 1M . If the evidence is inconclusive 

(falling in Occam’ s Window) neither model is rejected. The second principle is that if 

0M  is rejected then so are all of the models nested within it. The final solution obtained 

in this way is independent of the initial set of models considered, because any initial 

model that includes C  gives a similar result. 

 

Insert figure 1 around here 

 

3. APPLICATION 
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3.1 Motivation 

There are two main problems that seriously affect linear inverse solutions and have 

captured the interest of several authors in this field: 

Ghost sources: In addition to the actual sources that generate the EEG there are 

additional sources in the estimated solution that do not make much physiological sense 

and obscure the interpretation of the results. (Pascual-Marqui, 1995; Lütkenhöner and 

Grave De Peralta, 1997).  

Increasing bias with depth: This problem is related to the underestimation of deep 

sources in favor of more superficial ones, leading to solutions that tend to explain the data 

with the generators located near the sensors. 

The common feature in these two situations is the difficulty of the method to correctly 

identify the regions of the brain that actually contribute to the generation of the EEG. In 

the first case, there is an overestimation of the number of sources, while in the second 

some of the deep generators are omitted and/or wrongly reconstructed. We would like 

then to construct a methodology that allows us to measure the adequacy of a brain region 

for explaining the data, and use that measure to obtain solutions that automatically 

penalize ghost sources and favor those that really contribute to the generation of the EEG. 

In this respect, the Bayesian formulation described in previous sections offers a natural 

solution to this task. 

 

3.2 Specification of the models 

Let us assume that we have subdivided the gray matter into a finite number of 

compartments, and let us consider all the possible combinations of these compartments as 
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different anatomical constraints to solve the inverse problem of the EEG. We introduce 

these constraints in our formalism by defining the covariance matrix in (9) using 

 ( )3k k= ⋅ ⊗H L P I  

where L  is the discrete Laplacian operator, 3I  is the identity matrix of size 3 , ⊗  

denotes the Kronecker product and kP  is the diagonal matrix  
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Here ip  ( 1, , gi N= ! ) are the probabilities of the grid points for belonging to the gray 

matter, and were derived from the average Probabilistic MRI Atlas (PMA) produced by 

the Montreal Neurological Institute (Evans et al., 1993; Evans et al., 1994; Collins et al., 

1994; Mazziotta et al., 1995). With this definition of kP  a particular anatomical 

constraint is chosen by dropping the probabilities of the points outside the region of 

interest to a value 1� . We will call each set of sip  taken in this way as probabilistic 

mask. Note that this parameterization of the covariance matrix reduces to the traditional 

cLORETA method if we take 
gk N=P I  (see section 2.2.1 and 2.3.1), which means that 

the solution is calculated for all grid points within the gray matter. For the original 

unconstrained case (LORETA) all grid points within the head, including those that fall in 

the white matter, need to be taken into account. In this sense, LORETA and cLORETA 

could be interpreted as two of the models that are considered within the BMA paradigm. 
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Thus, choosing different probabilistic masks will define different prior distributions over 

the current density given by (9), and consequently will represent different Bayesian 

models to be considered. Applying then the BMA framework to this case allows us to 

measure the “adequacy” of each model to a given data in terms of the posterior 

probabilities defined in (20); and to use equation (22) to obtain posterior estimates of the 

PCD inside the brain by penalizing models or regions that receive less support from the 

data, and favoring those with higher posterior probabilities. 

 

Insert figure 2 around here 

 

In the present work we take 71 brain regions, obtained from a 3D segmentation of the 

PMA, as the compartments used to define the probabilistic mask corresponding to each 

model. Since several of these structures might be involved in a given brain process, more 

complex models need to be considered, and were constructed by combination of the 

simple 71 compartments. As shown in figure 2, the segmentation preserves the 

hemispheric symmetry of the brain, and includes also deep areas like thalamus, basal 

ganglia and brain stem.  

 

4. RESULTS 

 

4.1 Simulations 

In this section both EEG and MEG simulated data are used to characterize the BMA 

approach as a tomographic method and to demonstrate its strengths in the analysis of both 
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types of measurements. The results are also compared to previous approaches, such as 

traditional LORETA and cLORETA solutions. 

 

4.1.1 Description of the simulated data 

According to section 2.2, our source space consists of a 3D-grid of points that represent 

the possible generators of the EEG/MEG inside the brain, while the measurement space is 

defined by the array of sensors where the EEG/MEG is recorded. In the present work 

41,850 grid points (4.25 mm grid spacing) and different arrays of electrodes/coils are 

placed in registration with the PMA. The 3D-grid is further clipped by the gray matter, 

which consist of all brain regions segmented and shown in figure 2 (18,905 points). In 

this way, the Bayesian models (as defined in section 3.2) are completely specified. 

The three arrays of sensors used in this study are depicted in figure 3. For EEG 

simulations a first set of 19 electrodes (EEG-19) from the 10/20 system (FP1, FP2, F3, 

F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz) is chosen. A second 

configuration of 120 electrodes (EEG-120) is also used in order to investigate the 

dependence of the results on the number of sensors. In this case, the electrodes’  positions 

are determined by extending and refining the 10/20 system. For MEG simulations, a 

dense array of 151 sensors with a spatial localization that corresponds to the 

configuration of gradiometers in the helmet of the CTF System Inc, is used (MEG-151). 

The physical models constructed in this way, allow us to easily compute the 

electric/magnetic lead field matrices that relate the PCD inside the head, to the 

voltage/magnetic field measured at sensors’  locations in each case. 
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Insert figure 3 around here 

 

In the present study 25 test dipoles along the vertical axis through the center of the head 

are simulated. The origin of the coordinate system used here (“center of the head”) is the 

meeting point between the axis through inion and nasion and the axis through the 

preauricle points of the left and right ear. The z-axis is then pointing upward (to the 

vertex of the head), while the x- and y-axis are in the horizontal plane pointing to the 

front and left side of the head respectively. The z-coordinates of the test dipoles then vary 

from -46.75 to 80.75 mm. 

Regarding the temporal dynamics, all sources are simulated using a linear combination of 

sine functions with frequency components evenly spaced in the alpha band (8-12Hz). The 

amplitude of the oscillation as a function of frequencies is a narrow Gaussian peaked at 

10Hz, with maximum of 21 mA/m ( 21 nA/mm ). That is, for each dipole position, the time 

course of the activity is given by 

 ( ) ( )
1

sin 2
N

i i
i

j t A f tπ
=

= ∑ , where ( )28 10if
iA e− −= 8 12iHz f Hz≤ ≤  

Here if  are the frequency components and t  denotes time. Radial (vertical) and 

tangential (horizontal) dipoles are used to investigate orientation dependent effects, and 

the noise in each sensor was generated from a Gaussian distribution with zero mean and 

was added to the voltage/magnetic field calculated by solving the forward problem. To 

simulate realistic conditions, the noise variance was chosen in order to obtain a signal-to-

noise ratio (SNR) of about 10 for the most superficial dipoles. Since the dipoles have the 

same strength time course throughout all simulations, depth-dependent SNRs are 
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obtained. Taking all this into account, for each test dipole, 30 artifact-free epochs 

(segments) of EEG/MEG, each 2 seconds long with a sample period of 5ms, were 

simulated and transformed to the frequency domain by using the Fast Fourier Transform 

(FFT). Finally, the BMA approach, LORETA and cLORETA are used to obtain the 

reconstructed current densities in each series of experiments. 

 

4.1.2 Localization error and spatial resolution 

In order to evaluate the reconstructions results, the same measures evaluated by Fuchs et 

al. (1999), are used. In that work, a similar simulation study was carried for comparison 

and characterization of different linear and nonlinear Minimum Norm approaches, in 

terms of its mislocalization and spatial resolution. The localization error is then defined 

as the distance from the weighted centers of the clipped (by a 50% threshold) current 

distributions, to the true position 0r
G

 of the simulated dipole, that is 

 0i i i
i i

r j r j r∆ = ⋅ −∑ ∑G G G
, with max0.5ij j>  

where ir
G

 is the position of the i-th voxel with activity above the 50% of maximum 

activation, and ij  is the absolute value of the PCD at that voxel. The resolution of the 

methods is determined by the FWHM (Full With at Half Maximum) volume, which as in 

Fuchs’  paper, is calculated by counting all voxels with strength above 50% of the 

maximum current and multiplying that number by the volume of the voxel 

( 3 34.25 4.25 4.25 mm 18.06 mm∗ ∗ = ). The localization errors are further normalized to 

the head radius measured vertically along the z-axis (85 mm), and the FWHM volumes 



 28 

are normalized to the volume of the sphere defined by that radius. The two relative 

magnitudes are then expressed in percent. 

 

4.1.3 Reconstructions results 

The localization errors for EEG-19 and EEG-120 data, and for the three approaches under 

analysis, are depicted in figure 4. There is a general decrease of the localization error for 

all methods as the number of electrodes increases, although the major changes are 

undergone by LORETA and cLORETA for eccentricities below –20%. For greater 

eccentricities, BMA and LORETA show a similar behavior, with localization errors 

below 20%. Much greater error values are shown by cLORETA, which tend to decrease 

for very large eccentricities. Note that, on the contrary of LORETA approaches, no trend 

with depth is observed for BMA, which keeps very small localization errors for all 

eccentricity values. No significant dipole orientation effects are observed in any of the 

cases. 

 

Insert figure 4 around here 

 

The FWHM volume for this same data set is shown in logarithmic scale in figure 5. In all 

cases, three different regions are clearly defined, depending on the FWHM values for 

each method. There are differences of two orders of magnitudes between the FWHM 

shown by BMA ( 110− - 010 %) and by LORETA ( 110 - 210 %), while cLORETA show 

values in an intermediate scale ( 010 - 110 %). Different trends with increasing eccentricity 

are also appreciated. That is, while BMA is relatively independent of the source 
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eccentricity and of the number of sensors, with fluctuations in the order of tenths of units 

( 110− %), LORETA undergoes changes from near 40% for deep sources, to values below 

10% for locations near the surface of the head (except for EEG-19/tangential case, in 

which small changes are observed). In the case of cLORETA, the FWHM reaches a 

maximum at medium eccentricities. For radial orientations this maximum is localized at 

10% with amplitude of 5%, while for tangential dipoles it moves to an eccentricity of 

40%, with slightly increased amplitude. Major effects related to the array of electrodes 

used, are observed for eccentricities above 50%, where both LORETA and cLORETA 

show reduced values of the FWHM when the number of sensors is increased. 

 

Insert figure 5 around here 

 

Figure 6 summarizes the reconstruction results for MEG-151 measurements. As can be 

seen, the localization errors for BMA and cLORETA show a similar behavior as in EEG-

120 case. LORETA on the contrary presents several differences. For large eccentricities 

(above 80%) it shows small errors values (below 10%), which are of the same order as 

BMA and cLORETA. For deeper sources, the localization error increases linearly with 

depth, and reach values around 50%. Note that no dipole orientation effects are 

appreciated. Regarding the FWHM volume, the results shown by all approaches are very 

similar to those obtained for the EEG-120 case. 

 

Insert figure 6 around here 
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In summary, BMA approach shows better tomographic properties than LORETA and 

cLORETA as regards localization error and spatial resolution (measured through the 

FWHM volume). Additionally, the values obtained for BMA are relatively independent 

on the number of sensors, the dipole orientation and even on the type of measurement.  

 

4.1.4 Two illustrative examples 

In order to show the performance of BMA regarding the problem with depth biasing, and 

to demonstrate the limitations of linear solutions (exemplified through cLORETA) in this 

respect, two illustrative examples of source configurations are used. In the first case, two 

distributed sources are simulated at different eccentricity values at the same time. The 

outermost source is located at the occipital pole right, while the deeper one is placed at 

the thalamus (Opr+Th). The spatial distribution of the PCD is then simulated as two 

narrow Gaussian functions of the same amplitude; each of them peaked at the center of 

gravity of the corresponding region chosen for generating the EEG/MEG (figure 7A). 

The temporal dynamics already described in the case of dipole simulations is used for all 

the grid points within the two chosen regions. These same settings are then used for the 

second example, in which only the thalamic (Th) source was simulated (figure 7A). In 

both cases the measurements are generated with SNR=10 . 

 

Insert figure 7 around here 

 

The absolute values of the BMA and cLORETA solutions for the Opr+Th example, and 

for the three arrays of sensors used, are depicted in figure 8. In all cases, cLORETA is 



 31 

unable to recover the thalamic source, and blurred solutions plagued of ghost sources, 

which seems to be dominated by the cortical source, are shown instead. Note that the 

reconstructed sources become more concentrated and clearer, as the number of sensors 

increases. On the contrary, more meaningful estimates of the PCDs are obtained when 

using BMA to analyze these data. As shown in the figure, the spatial localizations of both 

cortical and subcortical sources are recovered with reasonable accuracy in all cases. 

These results suggest that, unlike what have been believed by many authors, the 

EEG/MEG seems to contain enough information for estimating deep sources, even in 

cases where such generators might be hidden by cortical activations. 

 

Insert figure 8 around here 

 

On the other hand, the reconstructed sources shown in figure 9 for the Th case 

demonstrate that depth biasing is an intrinsic problem of cLORETA, and not due to 

masking effects, since no cortical source is present in this set of simulations. Again in this 

example the BMA approach gives significantly better estimates of the PCD. 

 

Insert figure 9 around here 

 

An obvious question then arises: what makes LORETA unable to fully exploit the 

information contained in the EEG? The answer to this question seems to be apparent 

when interpreting Minimum Norm type methods within the framework of the Bayesian 

theory. The traditional estimation procedure followed by these methods is based on 
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assuming that a given model (anatomical constraint) is true and then the parameters (the 

PCD inside the brain) and hyperparameters (regularization parameter) are estimated 

conditioned on that model. As we already know, this procedure is limited to the first two 

levels of the Bayesian inference paradigm and is able to give meaningful estimates of the 

PCD only in cases where the posterior probability of the model given the data is close to 

1 (see equation (21)). In the present examples, the model that corresponds to cLORETA 

(the whole gray matter), was always rejected due to its low posterior probability, and thus 

not included in the Occam’ s Window. 

Some of the results of applying the BMA approach to these examples are summarized in 

table 1. Note that the number of models that belong to the Occam’ s Window is reduced 

for increasing number of sensors. This is natural since more precise measurements imply 

more information available about the underlying phenomena, and then more narrow and 

sharper model distributions are obtained. Consequently, as shown in the table, the 

probability and hence, the rank of the true model in the Occam’ s Window increases for 

dense arrays of sensors. Finally note that in many cases, the model with the highest 

probability is not the true one. This fact supports the use of BMA approach instead of 

using the model that maximizes the model probability distribution, in order to carry out 

inference upon it. In the present simulations, this is not critical, since the examples 

analyzed are too simple, but it becomes a determining factor when analyzing more 

complex data, as is the case with some real experimental conditions. 

 

Insert table 1 around here 
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4.2 Experimental data 

Now we shall investigate the results of applying the BMA approach to some 

experimental data. An important issue with this kind of testing is to find experimental 

scenarios where the results are as predictive as possible. To this end, we used four data 

sets coming from steady-state experiments that were designed to elicit responses from 

different brain areas related to the sensory system that was stimulated. Thus, responses 

from visual, somatosensory and auditory systems, to either left or right stimulation at 

different frequencies, were analyzed. In all cases, an array of 47 sensors (Fp1, Fp2, AF3, 

Afz, AF4, F7, F3, Fz, F4, F8, FC5, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P3, 

P7, Pz, P4, P8, PO3, PO4, Pz, O1, O2, Cb1, Cb2 and Iz), with Cz taken as reference 

electrode was used.  

Before going further we wish to clarify that, since the main emphasis of this paper is on 

the estimation methods, we do not intend to make an exhaustive discussion of the results 

obtained in the experiments, which will be the subject of future publications.  

 

4.2.1 Visual steady-state response 

In this experiment, the stimulus consisted of flash stimulation to the left eye at a 

frequency of 19.5Hz. The maximum intensity projection onto the three orthogonal planes, 

corresponding to the absolute value of the posterior PCD obtained using BMA in this 

case is depicted in figure 10. As seen in this figure, the maximum of the PCD is localized 

in the area of the primary visual cortex (PVC), which in humans lies almost exclusively 

on the medial surface of the posterior pole of the two cerebral hemispheres, on both sides 

of the calcarine fissure. This spatial distribution of the occipital generators agrees with 
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the bilateral representation of the visual field in the PVC. As it is known, the right PVC 

receives input from the nasal hemiretina of the left eye, while the left PVC processes 

information from the temporal hemiretina. Consequently, visual field stimulation of the 

left eye should elicit activation of the PVC on both hemispheres. 

  

Insert figure 10 around here 

 

The same reasoning can be applied to the almost symmetric activity seen in the thalamus. 

That is, the information flowing from the retina to the PVC is established through relay 

neurons lying on the lateral geniculate nucleus of the thalamus. It means that efferent 

fibers from the nasal hemiretina of the left eye make synapses in the contralateral side of 

the lateral geniculate nucleus, while left relay neurons are the target of fibers from the 

ipsilateral temporal hemiretina. Thus, the thalamus should reflect the same bilateral 

activity shown in the cortex. An additional frontal source in the lateral and middle front-

orbital gyrus, is also observed. This kind of source in the visual steady-state response has 

been commonly related to the ElectroRetinoGram (ERG) and is originated by activation 

of the photoreceptors and retinal middle layers. In summary, the tomographic map of the 

BMA solution shows an activation pattern that corresponds with the way in which the 

visual system processes information.  

On the other hand cLORETA, although showing a strong occipital peak very similar to 

the one obtained using BMA, produces also a cortical widespread activity with bilateral 

peaked amplitudes in the insula and the inferior occipital and middle temporal gyri 

(figure 11), which makes no much sense from the physiological point of view. Note that, 
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as in the simulations, this activity in the insula might suggest the existence of the 

additional thalamic source seen in the BMA solution. The ERG frontal source is also 

present in figure 11, but in this case it is located in the midline of the anterior pole, with 

activity that covers the cingulate region and the middle front-orbital gyrus of both 

hemispheres. 

 

Insert figure 11 around here 

 

The results in table 2 offer additional proof for the validity of the BMA approach over 

single model choice alternatives. Note that 29 models fall into the Occam’ s Window, 

with a low value of the maximum posterior probability, which shows that there is no 

significant evidence in favor of any of these models. Thus, procedures based on making 

inference conditional on any single particular model in this case, might lead to 

overconfident results and dangerous conclusions. Finally, the low value of the posterior 

probability shown by cLORETA model, confirms the unreliability of this solution and the 

poor support that it receives from the data.  

 

Insert table 2 around here 

 

4.2.2 Somatosensory steady-state response 

In figure 12, the BMA solution for 23.4Hz right thumb stimulation is shown. In this case, 

a contralateral activation clearly peaked in the area of the left primary somatosensory 

cortex (PSC) is observed. This spatial distribution of the generators is in correspondence 
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with the contralateral organization of the somatosensory system. The ascending nerve 

fivers coming from peripheral receptors cross completely at the level of the medulla 

oblongata and make synapses in the contralateral cortex. According to this view the left 

PSC contains information from the right side of the body, since it receives no ipsilateral 

afferent input. Consequently right somatosensory stimulation generates activation of the 

left PSC located in the postcentral gyrus of the left hemisphere, as is appreciated in the 

tomographic map of the BMA solution. 

 

Insert figure 12 around here 

 

As in the visual steady-state data, the results of table 3 validate the use of the BMA 

approach, due to the great number of models that fall into the Occam’ s Window and the 

low value of the maximum posterior probability of these models. In this case, again the 

model assumed by cLORETA was rejected due to the small value of its posterior 

probability. 

 

Insert table 3 around here 

 

4.2.3 Auditory steady-state responses 

Intracerebral sources for auditory steady-state responses have not been extensively 

studied and are a matter of current debate among the neuroscientific community. 

Previous works using topographic mapping have reported polarity-inversions of the 

response to 40-Hz brief tones over the midtemporal regions, suggesting that auditory 
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cortex and some thalamocortical circuits might be involved in the generation of this kind 

of activity (Johnson et al., 1988). More recently, the use of dipole source analysis has 

revealed that both brainstem and cortical (temporal lobe) sources are active during 

steady-state responses when using modulation frequencies between 12 and 90 Hz (Picton 

et al., 2002). In these studies, the intensity of the cortical activity was reported to 

decrease with increasing modulation frequency, with the brainstem being the dominant 

source at modulation rates greater than 50 Hz. Thus, it seems to be a general agreement 

that auditory steady-state responses are generated in the auditory cortex and in subcortical 

structures, with the location of the maximum activity depending on the modulation 

frequency used in the stimulus.  

The present data was obtained by stimulation of the left ear at modulation frequencies of 

12 and 90Hz, and were recorded from ten right-handed subjects with ages between 17 

and 50 years old. A more detailed description of the experiment can be found in Herdman 

et al., 2002. 

The absolute value of the BMA solution for the grand average over subjects at the two 

modulation rates is depicted in figure 13. Note that activations of brainstem, thalamus 

and temporal lobe are obtained. For both frequencies, the cortical source exhibits bilateral 

activation of the superior temporal gyrus, with greater amplitude in the hemisphere 

contralateral to the stimulated ear. This same contralateral localization of the maximum 

activity was observed at the level of the thalamus. In contrast, the brainstem source 

showed an ipsilateral maximum at 90 Hz, which changes into a more symmetric pattern 

for 12 Hz modulation frequencies. 
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Insert figure 13 around here 

 

As expected from the previous studies, the absolute maximum activity for 12Hz was 

reached in the cortex, while deeper sources were dominant at 90Hz. However, there is 

one difference between the BMA solution presented here and the previous studies 

described above, which is related with the additional thalamic source that was found at 

both modulation rates. In this respect, the Bayesian framework shows results that seem to 

agree better with the anatomy of the auditory system, since the three structures that were 

active, are involved in the processing of auditory information. In other words, if both 

ends of the auditory pathway (brain stem and cortex) have been reported to take part in 

the generation of the steady-state response, it is intuitive to think that thalamic relay 

neurons located in the thalamus are also able to produce measurable electric activity over 

the scalp surface. 

Finally we want to note that cLORETA model was rejected in these calculations due to 

its low posterior probabilities, which were of 47.54 10−∗  and 20.18 10−∗ 0.18*10-2 for 

12Hz and 90Hz modulation rates respectively. 

 

5. SUMMARY AND DISCUSSION 

 

In this paper a new formulation of the EEG/MEG Inverse Problem was described, within 

the framework of the Bayesian inference theory, which provided for a high degree of 

flexibility and a suitable way for including prior information in the problem of finding 

unique generators of the EEG/MEG.  This new formulation gave also a common ground 
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of analysis for the wide range of inverse methods available. The main contribution of the 

present work however, consisted of considering a third level of inference, now called 

Bayesian Model Averaging (BMA), that has been systematically omitted in previous 

works, and where the Bayesian theory is in a class of its own. This level of inference 

allowed accounting for the uncertainty about assuming a given model as the truth and 

carrying out inference upon it, which is the usual practice for solving the EEG/MEG 

inverse problem. BMA then allowed us to compute posterior estimates of the PCD inside 

the brain unconditionally for any model considered. 

This general formulation was used to address two of the main problems that affect linear 

inverse solutions: a) the presence of ghost sources in the estimated solution and b) the 

tendency to underestimate deep generators in favor of cortical ones. To this end, the 

Bayesian framework was applied to the case of considering different models, each 

differing in the anatomical constraints used to solve the EEG/MEG inverse problem. As a 

result, the final solution was calculated as a weighted average of the individual PCD for 

each particular model, where the weights were defined as the posterior probability of the 

corresponding model given the data. The BMA approach then favors brain regions that 

receive more support from the data and penalizes those which are less probable to 

contribute to the generation of the EEG/MEG. The results of the current work 

demonstrate that this strategy seems to cope with the two critical problems described 

above. 

This essential conclusion contradicts the widespread idea that deep sub-cortical structures 

are unable to generate a measurable voltage over the scalp surface. The reason for this 

belief rests on the fact that electric and magnetic fields are inversely related to the square 
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of the distance, suggesting that the fields generated by deep sources decay fast enough to 

produce no detectable voltage at sensor locations. In contrast to this, the high posterior 

probability values obtained for models that included deep structures like the thalamus 

show that BMA strategy could offer a way to handle this problem. This might also 

suggests that somehow EEG/MEG contains the necessary information to estimate deep 

sources, which supports the claims of many authors in this field (Ioannides, 1994; Taylor 

et al., 1999). This paper is a step forward in that direction, although much work still 

needs to be done in order to give more conclusive assertions in this respect. 

In order to characterize the new approach in terms of localization error and spatial 

resolution (FWHM volume), a simulation study was carried out, and the results were 

compared to LORETA and cLORETA solutions. It was demonstrated that BMA 

systematically improves the tomographic properties of these two previous approaches. 

Note that the frequency components used in the simulations belong to a narrow frequency 

band around 10Hz. Other frequency values were also used but not shown, given that very 

similar results were obtained.  

Additionally, three types of actual data were analyzed, which covered a wide range of 

frequency values: visual (19.5Hz), somatosensorial (23.4Hz) and auditive (12Hz and 

90Hz) steady-state responses. In all cases, meaningful results that seem to agree 

reasonably well with the neural substrate underlying those brain processes were obtained. 

For the visual experiment, a comparison with the solutions estimated by cLORETA was 

also carried out, demonstrating in this way some of the limitations of linear approaches in 

real experimental conditions. 
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The thrust of this paper is in the same direction as that of Schmidt et al. (1999). Both their 

paper and ours consider other properties of the posterior distribution than its mode, which 

is the usual case of maximum a posteriori Bayesian estimation. However, our formulation 

presented here differs from that of Schmidt in several ways. Regarding the activity 

model, Schmidt’ s choice consisted of semiparametric modeling of the PCD, which was 

constrained to be regions on the cortical surface only, without regarding deeper sources. 

This parameterization defined the number, extension and location of the sources. In our 

case, modeling is nonparametric over a set of alternative models defined by the areas 

allowed to be active. Possible areas are defined from a previous parcelation of the cortex. 

There are also differences with respect to the manner in which the Bayesian formalism is 

exploited. In Schmidt’ s paper, the estimation is carried out by sampling the posterior 

distribution of the parameters using MCMC, and constructing histograms of each 

parameter marginalized with respect to the others. Attention is centered on presenting a) 

number of active sources, and b) the areas that appear with a given probability as 

activated. The use of the evidence for each alternative model sampled is not explicitly 

addressed.  Our procedure, on the other hand, is concerned with obtaining an explicit 

estimate for the activation strength of the sources by averaging alternative models, each 

of them weighted by its posterior probability. Undoubtedly these approaches may be 

combined. It is conceivable to do semiparametric modeling using a varying number of 

active regions with variable locations and extensions and then carry out model averaging. 

This possibility is currently under research. 

We want to remark that the particular application of the BMA framework described here, 

must be interpreted as a general way of introducing anatomical prior information in the 
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solution of the EEG/MEG inverse problem, by considering a higher level of inference 

within the Bayesian paradigm. In our case, the methodology is applied to linear 

distributed inverse solutions, but it can be equally applied to other kinds of methods. In 

Fuchs et al. (1999) for example, two implementations of a nonlinear approach based on 

using L1 norm instead of Frobenius’  in equation (4), are proposed and compared with 

LORETA and Minimum Norm Least Square methods (MNLS). As reported in that paper, 

L1 norm outperforms LORETA with respect to the spatial resolution, measured through 

the FWHM volume. For a conjugate gradient implementation the FWHM fluctuates 

between 1% and 9%, while it is reduced to less than 1% for a sparse implementation. 

Nevertheless, the localization error for SNR below 10 (which is the case analyzed in the 

present paper) is in both cases greater than LORETA, and it shows a trend with the 

eccentricity in which cortical dipoles are much better localized than deep ones. The 

simulations results shown in this work demonstrate that the application of the BMA 

approach to LORETA, improves these numbers. Smaller localization errors with relative 

independence of the eccentricity of the source are obtained and the spatial resolution is 

reduced to values comparable to those of the L1 norm sparse implementation. In this 

sense we infer that the application of the BMA paradigm to nonlinear approaches (like 

the one proposed by Fuchs), could significantly improve its performance. 

Finally, although the theory presented in this paper was described for the EEG/MEG 

inverse problem in the frequency domain, the time domain case can be easily considered 

by assuming real normal distributions for the likelihood and prior densities of the PCD, 

instead of complex ones. The main limitation of this simple model is that it does not 

include prior information about the temporal evolution of the activity, which would be a 
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natural extension of the method. In general, the use of the three levels of the Bayesian 

inference framework opens a wide spectrum of possibilities that can be exploited not only 

for EEG/MEG and other techniques, but also for the analysis of joint recording data and 

combination of information coming from different neuroimaging modalities. 

 

APPENDIX 

 
A.1 Calculation of the evidence for the hyperparameters σ and β. 

With the choices (8) and (9) for the likelihood and the prior probability of j , we obtain 

for the posterior probability 
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multinormal density of a random vector 1p×x  with mean 1p×  and covariance matrix p p×  
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Here T Tσ β= +A K K H H  and k̂j  is given by equation (11). From (A2) we see that the 

posterior density for j  is proportional to a complex multinormal distribution with mean 
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( ) ˆ, , , k kE Mσ β =j v j  and covariance matrix ( ) 1, , , kVar Mσ β −=j v A . From the 

normalization condition, the posterior density ( ), , , kp Mσ βj v  in (A2) must integrate to 

1 and then we obtain an expression for the evidence ( ), , kp Mσ βv  
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The integral here can be easily calculated since it is the normalizing constant of a 

complex multinornormal distribution. Thus, the expression for the evidence takes the 

form 
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A.2 Bayes’  factors 

Let’ s assume that our data v  comes from one of the two hypothesis 0M  and 1M , with a 

probability density ( )0p Mv  and ( )1p Mv . The inclusion of prior probabilities ( )1p M  

and ( ) ( )0 11p M p M= − , then produces posterior probabilities ( )1p M v  and 

( ) ( )0 11p M p M= −v v  through the consideration of the data. From the Bayes’  Theorem 

we obtain 
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Converting to the odds scale (odds = probability/(1-probability)) we have 
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In this expression the factor 
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which transforms the prior odds into posterior odds is called Bayes’  factor. 
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Figure 1 Occam’ s Window: Interpretation of the posterior probability ratio. 



 55 

 

Figure 2 3D segmentation of 71 structures of the Probabilistic MRI Atlas developed at 

the Montreal Neurological Institute. As shown in the color scale, brain areas belonging to 

different hemispheres were segmented separately. 
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Figure 3 Different arrays of sensors used in the simulations. EEG-19 represents the 10/20 

electrodes system; EEG-120 is obtained by extending and refining the 10/20 system; and 

MEG-151 corresponds to the spatial configuration of MEG sensors in the helmet of the 

CTF System Inc. 
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Figure 4 Localization errors for EEG-19 and EEG-120 simulated data. The eccentricity 

is normalized to the head radius measured vertically along the z-axis (85 mm), and then 

expressed in %. The negative values represent test dipole positions below z 0= . 
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Figure 5 Spatial resolution measured through the Full With at Half Maximum (FWHM) 

volume for EEG-19 and EEG-120 simulated data. The eccentricity is normalized to the 

head radius measured vertically along the z-axis (85 mm), and then expressed in %. The 

negative values represent test dipole positions below z 0= . 
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Figure 6 Localization errors and spatial resolution measured through the Full With at 

Half Maximum (FWHM) volume for MEG-151 simulated data. The eccentricity is 

normalized to the head radius measured vertically along the z-axis (85 mm), and then 

expressed in %. The negative values represent test dipole positions below z 0= . 
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Figure 7 Spatial distributions of the simulated primary current densities. A) 

Simultaneous activation of two sources at different depths: one in the Occipital Pole right 

and the other in the Thalamus (OPr+Th). B) Simulation of a deep source in the Thalamus 

(Th). 
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Figure 8 3D reconstructions of the absolute values of BMA and cLORETA solutions for 

the OPr+Th source case. The first column indicates the array of sensors used in each 

simulated data set. The maximum of the scale is different for each case. For cLORETA 

(from top to down): Max = 0.21, 0.15 and 0.05; for BMA (from top to down): Max = 

0.41, 0.42 and 0.27. 
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Figure 9 3D reconstructions of the absolute values of BMA and cLORETA solutions for 

the Th source case. The first column indicates the array of sensors used in each simulated 

data set. The maximum of the scale is different for each case. For cLORETA (from top to 

down): Max = 0.06, 0.01 and 32.91 10−∗ ; for BMA (from top to down): Max = 0.36, 0.37 

and 0.33. 
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Figure 10 Maximum intensity projection (onto coronal, axial and sagital planes) views of 

the BMA solution for visual steady-state response to 19.5Hz left eye stimulation. Three 

main sources are observed, with the maximum activity located in the calcarine fissure 

(occipital red spot). The frontal source covers the lateral and middle front-orbital gyrus 

and is associated with the ElectroRetinoGram produced by the activation of the 

photoreceptors in the retina. The third source is located in the thalamus. 
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Figure 11 Maximum intensity projection (onto coronal, axial and sagital planes) views of 

the cLORETA solution for visual steady-state response to 19.5Hz left eye stimulation. 

The maximum activity is located in the posterior pole of the brain (red spot).  Four 

additional sources are visible in the axial plane, which are located at the insula and the 

inferior occipital and middle temporal gyri of both hemispheres. A sixth source in the 

anterior pole is also observed. 
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Figure 12 Orthogonal views of the BMA solution for steady-state response to 23.4Hz 

stimulation of the right thumb. The three planes intersect each other at the point of 

maximum activity, which is located in the postcentral gyrus left. 
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Figure 13 Three orthogonal views of the BMA solution for auditory steady-state 

responses to left ear stimulation. A) 12Hz modulation frequency. B) 90Hz modulation 

frequency. In both, A) and B), the axial cut was taken at the maximum of the activity 

(right auditory cortex and thalamus respectively), while coronal and sagital planes were 

used to visualize the brainstem source. 
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Table 1 BMA results for the two illustrative examples. 

Simulated 

Source 

Type of 

Sensors 

Number of 

models in C  

Minimum and Maximum 

Probabilities in C   

Probability of 

the true Model 

EEG-19 15 [0.02-0.30] 0.11 (3) 

EEG-120 2 [0.49-0.51] 0.49 (2) 

 

 
Opr+Th 

MEG-151 1 [1.00-1.00] 1 

EEG-19 3 [0.37-0.30] 0.30 (3) 

EEG-120 1 [1.00-1.00] 1 

 

Th 

MEG-151 1 [1.00-1.00] 1 

Here C  denotes the Occam’ s Window as defined in section 2.3.4, with 20N =  ( 0LO =  

and 3RO ≈ ). In the last column, the number in parenthesis indicates the position of the 

true model when all the models in C  are ranked by probabilities.  
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Table 2 BMA results for the visual steady-state experiment. 

Number of models in the Occam’ s Window Maximum probability ( )0p M v  

29 0.09 1.24*10-20 

Here the model 0M  contains the 71 compartments segmented, which corresponds to 

constrain the solution to the whole gray matter (cLORETA). The Occam’ s Window was 

defined by using 20N =  ( 0LO =  and 3RO ≈ ) in equation (24). 
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Table 3 BMA results for the somatosensory steady-state experiment. 

Number of models in the Occam’ s Window Maximum probability ( )0p M v  

15 0.12 6.33*10-11 

As in table 2, the model 0M corresponds to cLORETA case, and the Occam’ s Window 

was defined by using 20N =  ( 0LO =  and 3RO ≈ ) in equation (24). 

 


